

Minamata Convention: Initial Assesment of Turkey

Ivan Holoubek ^{1, 2, 3}

Research centre for toxic compounds in the environment

¹ RECETOX, Masaryk University, Brno, CR

² CzechGlobe, Academy of Science, Brno, CR

³ TOCOEN, s.r.o., Brno, CR

holoubek@recetox.muni.cz; http://recetox.muni.cz

Inventory Mercury Training Meeting

29 - 31/01/2018, Hilton Garden Inn Eskişehir

Lecture 3

Mercury Sources: Related Sectors

Mercury environmental enters

Industrial processes - input and output of Hg

Sources: adapted from UNEP, Summary of supply, trade and demand information on mercury, 2006; UNEP, Mercury, A Priority for Action, 2008. Designed by Zoï Environment Network / GRID-Arendal, December 2012

Main sources of mercury releases and main control options

The releases of mercury to the biosphere can be grouped in four categories (UNEP, 2002)

- Natural sources releases due to <u>natural mobilization</u> of naturally occurring mercury from the Earth's crust, such as volcanic activity and weathering of rocks;
- Current anthropogenic (associated with human activity) releases from the <u>mobilization of mercury impurities</u> in raw materials such as fossil fuels – particularly coal, and to a lesser extent gas and oil – and other extracted, treated and recycled minerals;
- Current anthropogenic releases resulting from mercury <u>used</u> <u>intentionally in products and processes</u>, due to releases during manufacturing, leaks, disposal or incineration of spent products or other releases;
- Re-mobilization of historic <u>anthropogenic mercury releases</u> <u>previously deposited</u> in soils, sediments, water bodies, landfills and waste/tailings piles.

Emission source types and remobilisation processes affecting mercury distribution in the environment

Important global pathways of mercury in commerce and the environment

Life-cycle of Hg product or processs

Mercury management options

Step 2: Energy consumption and fuel production; **Step 3:** Domestic production of metals and raw materials; **Step 4: Domestic production and processing with intentional** mercury use; **Step 5:** Waste treatment and recycling; Step 6: General consumption of mercury in products, as metal mercury and as mercury containing substances; **Step 7: Crematoria and cemeteries;** Step 8: Miscellaneous mercury sources not quantified on **Inventory Level 1;**

Examples of anthropogenic mercury releases to the environmental media

- Destinations of releases to the environment and types of releases to each receiving environmental medium:
- Air the atmosphere: Point sources and diffuse sources from which release may be spread locally, regionally and hemispherically/globally with air masses.
- Emissions from major point sources such as coal fired power plants, metal extraction, waste incineration, chlor-alkali facilities, secondary scrap recycling/smelting, cement production, industrial inorganic chemicals production and diffuse sources such as housing (fossil fuel combustion);
- Emissions from artisanal gold mining;
- Section Sectio
- Emissions from mercury-containing paints;
- Diffuse releases from uncollected waste products (fluorescent lamps, batteries, thermometers, mercury switches, lost teeth with amalgam fillings etc.);
- Sevaporation of previous discharges to soil and water;
- **Evaporation of mercury disposed of on landfills.**

Examples of anthropogenic mercury releases to the environmental media

- Water aquatic environment: Point sources and diffuse sources from which mercury will be spread to marine environments (oceans), and freshwaters (rivers, lakes etc.).
- Solution Direct discharges from industry and households to aquatic environments;
- **Emissions from artisanal gold mining;**
- Indirect discharges via waste water treatment systems;
- Surface run-off and leachate from mercury contaminated soil and landfills without leachate collecting membrane and leachate water cleaning system;
- **Wash-out of mercury previously applied or deposited on land.**

Examples of anthropogenic mercury releases to the environmental media

Land/soil – terrestrial environment: General soil surfaces and ground water.

- Diffuse releases from uncollected waste products (batteries, thermometers, mercury switches, lost teeth with amalgam fillings etc.);
- Local releases from industry: On site materials and waste storage, broken/unused pipes, and equipment and building material contaminated with mercury;
- Spreading of sewage sludge with mercury content on agricultural land (used as fertilizer);
- Application on land, seeds or seedlings of pesticides with mercury compounds;
- Use of solid residues from waste incineration and coal combustion for construction purposes (slag/bottom ash and fly ash);
- **Burial of persons with dental amalgam fillings.**

Source category	Source present?
	Y/N/?
Energy consumption	
Coal combustion in large power plants	
Other coal uses	
Combustion/use of petroleum coke and heavy oil	
Combustion/use of diesel, gasoil, petroleum, kerosene	
Biomass fired power and heat production	
Charcoal combustion	
Fuel production	
Oil extraction	
Oil refining	

Source category	Source present?
	Y/N/?
Extraction and processing of natural gas	
Primary metal production	
Mercury (primary) extraction and initial processing	
Production of zinc from concentrates	
Production of copper from concentrates	
Production of lead from concentrates	
Gold extraction by methods other than mercury	
amalgamation	
Alumina production from bauxite (aluminium production)	

Source category	Source present?
	Y/N/?
Primary ferrous metal production (iron, steel production)	
Gold extraction with mercury amalgamation - without use	
of retort	
Gold extraction with mercury amalgamation - with use of	
retorts	
Other materials production	
Cement production	
Pulp and paper production	
Production of chemicals and polymers	
Chlor-alkali production with mercury-cells	
VCM production with mercury catalyst	
Acetaldehyde production with mercury catalyst	

Source category	Source present?
	Y/N/?
Production of products with mercury content	
Hg thermometers (medical, air, lab, industrial etc.)	
Electrical switches and relays with mercury	
Light sources with mercury (fluorescent, compact, others:	
see guideline)	
Batteries with mercury	
Manometers and gauges with mercury	
Biocides and pesticides with mercury	
Paints with mercury	
Skin lightening creams and soaps with mercury chemicals	

Source category	Source present?
	Y/N/?
Medical blood pressure gauges (mercury	
sphygmomanometers)	
Other manometers and gauges with mercury	
Laboratory chemicals	
Other laboratory and medical equipment with mercury	
Production of recycled of metals	
Production of recycled mercury ("secondary production")	
Production of recycled ferrous metals (iron and steel)	

Source category	Source present?
	Y/N/?
Waste incineration	
Incineration of municipal/general waste	
Incineration of hazardous waste	
Incineration of medical waste	
Sewage sludge incineration	
Open fire waste burning (on landfills and informally)	
Waste deposition/landfilling and waste water treatment	
Controlled landfills/deposits	
Informal dumping of general waste *1	
Waste water system/treatment	
Crematoria and cemeteries	
Crematoria	
Cemeteries	

Source present?
Y/N/?

	Source
Source category	present?
	Y/N/?
Bougie tubes and Cantor tubes (medical)	
Educational uses	
Gyroscopes with mercury	
Vacuum pumps with mercury	
Mercury used in religious rituals (amulets and other uses)	
Mercury used in traditional medicines (ayurvedic and others) and	
homeopathic medicine	
Use of mercury as a refrigerant in certain cooling systems	
Light houses (levelling bearings in marine navigation lights)	
Mercury in large bearings of rotating mechanic parts in for	
example older waste water treatment plants	
Tanning	

Source
present?
Y/N/?

Chlor-alkali production - mercury

- Schlor-alkali industry largest EU user of mercury
- Chlor-alkali industry largest source of mercury exports
- **b** Focus on mercury as a global pollutant
- **Mercury process is not BAT**

Mercury in the chlor-alkali industry:

- **Air and water emissions**
- **Site contamination**
- **Excessive concentrations off-site**

Amalgam method of chlorine production

Average losses Hg \approx 2,1 g Hg/t Cl₂

- 0,1 g Hg/t Cl₂ in waters
- 0,5 g Hg/t Cl_2 in products
- 1,5 g Hg/t Cl₂ in air

New trends of chlorine production

Membrane proces

Advantages:

b No Hg process

Disadvantages:
High acquisition costs
High operating costs

Trend of mercury emissions (weighted averages) from mercury cell chlor-alkali plants in EU-27 and EFTA countries as reported by Euro Chlor

Chlor-Alkali Production in Europe

Chlorine manufacturing technologies

(% of total installed capacity)

Chlor-Alkali Production - world

WCC - Chlor-alkali industry / Number of plants and capacity of mercury electrolysis units (in USA/Canada/Mexico, Europe, Russia, India and Brazil/ Argentina/Uruguay)

WCC - Chlor-alkali industry / Total mercury emissions (air + water + products) (in USA/Canada/Mexico, Europe, Russia, India and Brazil/ Argentina/Uruguay)

WCC – World Chlorine Council

get

- The number of plants went down from 91 to 53 over the period 2002-2011 (-42%) and the mercury cell-based capacity from 9.1 million tonnes to 5.3 million tonnes (-42%).
- Global mercury emissions went down from 24.6 tonnes per year to about
 6.9 tonnes, or 72 % decrease over the ten years of reporting by WCC. The emissions expressed in g mercury/ tonne annual chlorine capacity show a similar trend.

Mercury waste management in the CR

Waste containing mercury = hazardous waste - 9 catalogue nr.

Production of specific waste containing mercury		
Type of waste	Ton - 2010	
Construction and demolition waste		
containing mercury	150	
Waste from inorganic chemical processes	135	
Fluorescent tubes and other mercury-		
containing waste	135	
Amalgam waste from dental care	2	

Mercury waste production			
year	2009	2010	2011
ton	454,8	440,1	675,8

Visible metallic mercury in alluvial sediments

Mongolia: Technical and Technological Support for Ecological Burden Remediation Caused by Illegal Mining in Central Part of Mongolia, GEOMIN Company;

Zambia - Detail of the surface of the main tailings pond of chemical wastes at the Bwana Mkubwa Locality Incrustations and efflorescence of toxic salts (light gray) originating through evaporation are wind blown over adjacent areas during the dry season.

Spolana Neratovice – former production of chlorine

Mercury waste management CR

Waste containing mercury = hazardous waste - 9 catalogue nr.Production of specific waste containing mercurymercuryType of wasteTon - 2010Construction and demolition waste
containing mercury150Waste from inorganic chemical processes135Fluorescent tubes and other mercury-150

IndicationIndicationcontaining waste135Amalgam waste from dental care2

Mercury waste production			
year	2009	2010	2011
ton	454,8	440,1	675,8

Collection in the Czech Republic

Straight fluorescent lamps

Collection in the Czech Republic

¢

Ø

Mercury is included in a white CaO powder
Lapms are collected in in cardboard boxes,
which are specially designed to prevent smash of lapms

Treatment - feeding

- **b** Inside special machines
- Staff feeds lamps into special grips by lamp cap

Straight fluorescent lamps

Gas discharge lamps

Treatment - depollution

- The machine breaks off lamp caps
- Shredding of glass, milling

- Milled glass is feeded into furnace, mercury is converted into gas, exhausted into condenser and coolled
- **Glass is afterwards cleaned**
- **Viable market for mercury: producers of fluorescent lamps**
- **In line with Basel guidance**

Teşekkür Ederim

